Nanoparticles

Roiter, Y., Minko, I., Nykypanchuk, D., Tokarev, I., & Minko, S. (2011). Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects. Nanoscale, 4(1), 284–292. https://doi.org/10.1039/C1NR10932D
Tokarev, I., & Minko, S. (2012). Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. Soft Matter, 8(22), 5980–5987. https://doi.org/10.1039/C2SM25069A
Motornov, M., Malynych, S. Z., Pippalla, D. S., Zdyrko, B., Royter, H., Roiter, Y., … Minko, S. (2012). Field-Directed Self-Assembly with Locking Nanoparticles. Nano Letters, 12(7), 3814–3820. https://doi.org/10.1021/nl301780x
Neibert, K., Gopishetty, V., Grigoryev, A., Tokarev, I., Al-Hajaj, N., Vorstenbosch, J., … Maysinger, D. (2012). Wound-Healing with Mechanically Robust and Biodegradable Hydrogel Fibers Loaded with Silver Nanoparticles. Advanced Healthcare Materials, 1(5), 621–630. https://doi.org/10.1002/adhm.201200075
Tsyalkovsky, V., Burtovyy, R., Klep, V., Lupitskyy, R., Motornov, M., Minko, S., & Luzinov, I. (2010). Fluorescent Nanoparticles Stabilized by Poly(ethylene glycol) Containing Shell for pH-Triggered Tunable Aggregation in Aqueous Environment. Langmuir, 26(13), 10684–10692. https://doi.org/10.1021/la101021t
Motornov, M., Roiter, Y., Tokarev, I., & Minko, S. (2010). Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Progress in Polymer Science, 35(1–2), 174–211. https://doi.org/10.1016/j.progpolymsci.2009.10.004
Tokarev, I., Tokareva, I., Gopishetty, V., Katz, E., & Minko, S. (2010). Specific Biochemical-to-Optical Signal Transduction by Responsive Thin Hydrogel Films Loaded with Noble Metal Nanoparticles. Advanced Materials, 22(12), 1412–1416. https://doi.org/10.1002/adma.200903456
Pita, M., Tam, T. K., Minko, S., & Katz, E. (2009). Dual Magnetobiochemical Logic Control of Electrochemical Processes Based on Local Interfacial pH Changes. ACS Applied Materials & Interfaces, 1(6), 1166–1168. https://doi.org/10.1021/am900185c
Roiter, Y., Ornatska, M., Rammohan, A. R., Balakrishnan, J., Heine, D. R., & Minko, S. (2009). Interaction of Lipid Membrane with Nanostructured Surfaces. Langmuir, 25(11), 6287–6299. https://doi.org/10.1021/la900119a
Sheparovych, R., Motornov, M., & Minko, S. (2009). Low Adhesive Surfaces that Adapt to Changing Environments. Advanced Materials, 21(18), 1840–1844. https://doi.org/10.1002/adma.200802449
Motornov, M., Zhou, J., Pita, M., Tokarev, I., Gopishetty, V., Katz, E., & Minko, S. (2009). An Integrated Multifunctional Nanosystem from Command Nanoparticles and Enzymes. Small, 5(7), 817–820. https://doi.org/10.1002/smll.200801550
Minko, S., Luzinov, I., Motornov, M., Sheparovych, R., Lupitskyy, R., Liu, Y., & Klep, V. (2009). Coatings via self-assembly of smart nanoparticles. In T. Provder & J. Baghdachi (Eds.), Smart Coatings II (Vol. 1002, pp. 145–157). Retrieved from http://www.oup.com/us/catalog/general/subject/Chemistry/PolymerChemistry/?view=usa&ci=9780841272187
Motornov, M., Sheparovych, R., Lupitskyy, R., MacWilliams, E., & Minko, S. (2008). Superhydrophobic Surfaces Generated from Water-Borne Dispersions of Hierarchically Assembled Nanoparticles Coated with a Reversibly Switchable Shell. Advanced Materials, 20(1), 200–205. https://doi.org/10.1002/adma.200700030
Lupitskyy, R., Motornov, M., & Minko, S. (2008). Single Nanoparticle Plasmonic Devices by the “Grafting to” Method. Langmuir, 24(16), 8976–8980. https://doi.org/10.1021/la801068k
Luzinov, I., Minko, S., & Tsukruk, V. V. (2008). Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter, 4(4), 714–725. https://doi.org/10.1039/B718999K
Roiter, Y., Ornatska, M., Rammohan, A. R., Balakrishnan, J., Heine, D. R., & Minko, S. (2008). Interaction of Nanoparticles with Lipid Membrane. Nano Letters, 8(3), 941–944. https://doi.org/10.1021/nl080080l
Tsyalkovsky, V., Klep, V., Ramaratnam, K., Lupitskyy, R., Minko, S., & Luzinov, I. (2008). Fluorescent Reactive Core–Shell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. Chemistry of Materials, 20(1), 317–325. https://doi.org/10.1021/cm0718421
Motornov, M., Zhou, J., Pita, M., Gopishetty, V., Tokarev, I., Katz, E., & Minko, S. (2008). “Chemical Transformers” from Nanoparticle Ensembles Operated with Logic. Nano Letters, 8(9), 2993–2997. https://doi.org/10.1021/nl802059m
Tokarev, I., Tokareva, I., & Minko, S. (2008). Gold-Nanoparticle-Enhanced Plasmonic Effects in a Responsive Polymer Gel. Advanced Materials, 20(14), 2730–2734. https://doi.org/10.1002/adma.200702885
Jimenez, J., Sheparovych, R., Pita, M., Narvaez Garcia, A., Dominguez, E., Minko, S., & Katz, E. (2008). Magneto-Induced Self-Assembling of Conductive Nanowires for Biosensor Applications. The Journal of Physical Chemistry C, 112(19), 7337–7344. https://doi.org/10.1021/jp800013n
Motornov, M., Sheparovych, R., Lupitskyy, R., MacWilliams, E., & Minko, S. (2007). Responsive colloidal systems: Reversible aggregation and fabrication of superhydrophobic surfaces. Journal of Colloid and Interface Science, 310(2), 481–488. https://doi.org/10.1016/j.jcis.2007.01.052
Motornov, M., Sheparovych, R., Lupitskyy, R., MacWilliams, E., Hoy, O., Luzinov, I., & Minko, S. (2007). Stimuli-Responsive Colloidal Systems from Mixed Brush-Coated Nanoparticles. Advanced Functional Materials, 17(14), 2307–2314. https://doi.org/10.1002/adfm.200600934
Brittain, W. J., & Minko, S. (2007). A structural definition of polymer brushes. Journal of Polymer Science Part A: Polymer Chemistry, 45(16), 3505–3512. https://doi.org/10.1002/pola.22180
Seifarth, O., Krenek, R., Tokarev, I., Burkov, Y., Sidorenko, A., Minko, S., … Schmeiβer, D. (2007). Metallic nickel nanorod arrays embedded into ordered block copolymer templates. Thin Solid Films, 515(16), 6552–6556. https://doi.org/10.1016/j.tsf.2006.11.048
Sheparovych, R., Sahoo, Y., Motornov, M., Wang, S., Luo, H., Prasad, P. N., … Minko, S. (2006). Polyelectrolyte Stabilized Nanowires from Fe3O4 Nanoparticles via Magnetic Field Induced Self-Assembly. Chemistry of Materials, 18(3), 591–593. https://doi.org/10.1021/cm051274u
Tokareva, I., Tokarev, I., Minko, S., Hutter, E., & Fendler, J. H. (2006). Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. Chemical Communications, (31), 3343–3345. https://doi.org/10.1039/B604841B
Tokareva, I., Minko, S., Fendler, J. H., & Hutter, E. (2004). Nanosensors Based on Responsive Polymer Brushes and Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. Journal of the American Chemical Society, 126(49), 15950–15951. https://doi.org/10.1021/ja044575y
Stamm, M., Minko, S., Tokarev, I., Fahmi, A., & Usov, D. (2004). Nanostructures and Functionalities in Polymer Thin Films. Macromolecular Symposia, 214(1), 73–84. https://doi.org/10.1002/masy.200451006
Minko, S., Müller, M., Luchnikov, V., Motornov, M., Usov, D., Ionov, L., & Stamm, M. (2004). Mixed polymer brushes: Switching of surface behavior and chemical patterning at the nanoscale. In R. C. Advincula, W. J. Brittain, K. C. Caster, & J. Rühe (Eds.), Polymer Brushes : Synthesis, Characterization, Applications (Wiley-VCH, pp. 403–425). Weinheim. Retrieved from http://www.wiley-vch.de/publish/en/books/ISBN3-527-31033-9/
LeMieux, M. C., Usov, D., Minko, S., Stamm, M., & Tsukruk, V. (2004). Local chain organization of switchable binary polymer brushes in selective solvents. In R. C. Advincula, W. J. Brittain, K. C. Caster, & J. Rühe (Eds.), Polymer Brushes : Synthesis, Characterization, Applications (Wiley-VCH, pp. 427–440). Weinheim. Retrieved from http://www.wiley-vch.de/publish/en/books/ISBN3-527-31033-9/
Minko, S., Kiriy, A., Gorodyska, G., & Stamm, M. (2002). Mineralization of Single Flexible Polyelectrolyte Molecules. Journal of the American Chemical Society, 124(34), 10192–10197. https://doi.org/10.1021/ja026784t
Kiriy, A., Minko, S., Gorodyska, G., Stamm, M., & Jaeger, W. (2002). Palladium Wire-Shaped Nanoparticles from Single Synthetic Polycation Molecules. Nano Letters, 2(8), 881–885. https://doi.org/10.1021/nl025603i

Los tejidos del pene pueden ser lesionados, les damos lo mejor de las marcas de Lovegra y Levitra sin recetas. No se debilita efectivas, este es un medicamento muy popular, el efecto de Kamagra no es satisfactorio. La excitación cialis-parafarmacia.com sexual expresada despierta impulsos del sistema nervioso central, el Cialis para mujeres es un fármaco realmente efectivo.