Current

research

projects

Biointerfaces

Preprogrammed Dynamic Microstructured Polymer Interfaces.

Responsive surfaces for life science applications

  1. Tokarev, I.; Minko, S., Preprogrammed Dynamic Microstructured Polymer Interfaces. Advanced Functional Materials 2020, 30 (2), 1903478.
  2. Kuroki, H.; Gruzd, A.; Tokarev, I.; Patsahan, T.; Ilnytskyi, J.; Hinrichs, K.; Minko, S. Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. ACS Appl. Mater. Interfaces 2019, 11, 18268-18275.
  3. Kroning, A.; Furchner, A.; Aulich, D.; Bittrich, E.; Rauch, S.; Uhlmann, P.; Eichhorn, KJ.; Seeber, M.; Luzinov, I.; Kilbey, SM.; Lokitz, BS.; Minko, S. ; Hinrichs, K. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment, ACS Appl. Mater. Interfaces 2015, 7(23), 12430-12439.
  4. Tokarev, I.; Gopishetty, V.; Minko,S. Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend. ACS Appl. Mater. Interfaces 2015, 7(23), 3560-3565.
  5. Recco, L. C.; Tokarev, I.; Minko, S.; Pedrosa, V. A. Plasmonic nanobiosensor with chain reaction amplification mechanism, Chemistry – A Europ. J. 2014, 20(5), 1226-1230.
  6. Kuroki, Tokarev, I; Minko, S. Responsive surfaces for life science applications, Annual Review of Materials Research 2012,, 48, 343-372.

3D-scaffolds and nanofibers

Drawing of micro‐and nanofibers for additive manufacturing of well‐organized 3D‐nanostructured scaffolds

  1. Yadavalli, N. S.; Asheghali, D.; Tokarev, A.; Zhang, W. Z.; Xie, J.; Minko, S., Gravity Drawing of Micro‐and Nanofibers for Additive Manufacturing of Well‐Organized 3D‐Nanostructured Scaffolds,  Small 2020, 16 (11). DOI 10.1002/smll.201907422.
  2. Chawathe, M.; Asheghali, D.; Minko, S.; Jonnalagadda, S.; Sidorenko, A., Adaptive Hybrid Molecular Brushes Composed of Chitosan, Polylactide, and Poly(N-vinyl pyrrolidone) for Support and Guiding Human Dermal Fibroblasts, ACS Applied Bio Materials 2020, 3 (7), 4118-4127. DOI 10.1021/acsabm.0c00217.
  3. Asheghali, D.; Lee, S.-J.; Furchner, A.; Gruzd, A.; Larson, S.; Tokarev, A.; Stake, S.; Zhou, X.; Hinrichs, K.; Zhang, L. G.; Minko, S., Enhanced neuronal differentiation of neural stem cells with mechanically enhanced touch-spun nanofibrous scaffolds. Nanomedicine : nanotechnology, biology, and medicine 2020, 24, 102152-102152.
  4. Lee, S.-J.; Asheghali, D.; Blevins, B.; Timsina, R.; Esworthy, T.; Zhou, X.; Cui, H.; Hann, S. Y.; Qiu, X.; Tokarev, A.; Minko, S.; Zhang, L. G., Touch-Spun Nanofibers for Nerve Regeneration. ACS Applied Materials & Interfaces 2020, 12 (2), 2067-2075.
  5. Tokarev, A.; Asheghali, D.; Trotsenko, O.; Gruzd, A.; Lin, X.; Griffiths, I. M.; Stone, H. A.; Minko, S. Touch- and Brush-Spinning of Nanofibers, Adv. Mater. 2015, 27 (41), 6526-6532;  DOI: 10.1002/adma.201502768.
  6. Tokarev, A.; Trotsenko, O.; Asheghali, D.; Griffiths, I. M.; Stone, H. A.; Minko, S. Reactive magnetospinning of nano and microfibers. Angew. Chem. Int. Ed. 2015, 54(46), 13613-13616; DOI: 10.1002/anie.201506796.
  7. Tokarev, A.; Trotsenko, O.; Griffiths, I. M.; Stone, H. A.; Minko, S. Magnetospinning of Nano- and Microfibers. Adv. Mater. 2015, 27 (23) 3560–3565; DOI: 10.1002/adma.201500374.

Delivery Systems

  1. Bakshi, S.; Zakharchenko, A.; Minko, S.; Kolpashchikov, D.M.; Katz, E. Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells, Magnetochemistry 2019, 5 (2), 24.
  2. Zakharchenko1, A.; Guz N.; Laradji1, A. M.; Katz, E.; Minko, S. Magnetic Field Remotely Controlled Selective Biocatalysis, Nature Catalysis, 2018, 1, 73-81.
  3. Zhiyuan Jin, Güray Güven, Vera Bocharova, Jan Halámek, Ihor Tokarev, Sergiy Minko, Artem Melman, Daniel Mandler, and Evgeny Katz. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode ACS Appl. Mater. Interfaces, 2012, 4 (1), 466–475.
  4. Motornov, M.; Royter, H.; Lupitskyy, R.; Roiter, Y.; Minko, S. Stimuli-responsive hydrogel hollow capsules by material efficient and robust cross-linking-precipitation synthesis revisited. Langmuir, 2011, 27(24), 15305–15311.
  5. . Lupitskyy, R.; Minko, S. Robust Synthesis of Nanogel Particles by Aggregation-Crosslinking Method. Soft Matter, 2010, 6 (18), 4396-4402.
  6. Tokarev, I.; Minko, S. Stimuli-Responsive Porous Hydrogels at Interfaces for Molecular Filtration, Separation, Controlled Release, and Gating in Capsules and Membranes,  Advanced Materials 2010, 22 (31) 3446-3462.

Polymer materials

Sequence-defined monodisperse polymers
Polymer brushes
Tunable ultrathin membranes with non-volatile pore shape memory

  1. Tokarev, I.; Minko, S., Preprogrammed Dynamic Microstructured Polymer Interfaces. Advanced Functional Materials 2020, 30 (2), 1903478.
  2. Gao, H.; Asheghali, D.; Yadavalli, N. S.; Minh Thien, P.; Tho Duc, N.; Minko, S.; Sharma, S., Fabrication of core-sheath nanoyarn via touchspinning and its application in wearable piezoelectric nanogenerator. Journal of the Textile Institute 2020, 12 (2), 2067-2075; DOI 10.1080/00405000.2019.1678558.
  3. Kuroki, H.; Gruzd, A.; Tokarev, I.; Patsahan, T.; Ilnytskyi, J.; Hinrichs, K.; Minko, S. Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. ACS Applied Materials & Interfaces 2019, 11, 18268-18275.
  4. C Pastorino, C.; Kim, Y.; Minko, S.; Müller, M., Nanopatterning of Solvent between Apposing Planar Brushes under Pressure, Macromolecules, 2018, 51, 16, 6387-6394.
  5. Gao, H.;  Minh, P.T. Wang, H.;  Minko, S.;  Locklin, J.; Nguyen, T.;  Sharma, S. High-performance flexible yarn for wearable piezoelectric nanogenerators, Smart Materials and Structures, 2018, 27 (9), 095018.
  6. Borodinov, N.; Gil, D.; Savchak, M.; Gross, C. E.; Yadavalli, N. S.; Ma, R.; Tsukruk, V. V.; Minko, S.; Vertegel, A.; Luzinov, I. En Route to Practicality of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS Applied Materials & Interfaces 2018, 10, 13941-13952.
  7. Gamella, M.; Zakharchenko, A.; Guz, N.; Masi, M.; Minko, S.; Kolpashchikov, D. M. ; Iken, H.; Poghossian, A.; Schoning, M. J.; Katz, E. DNA Computing Systems Activated by Electrochemically-triggered DNA Release from a Polymer-brush-modified Electrode Array, Electroanalysis 2017, 29 (2), 398-408.
  8. Trotsenko, O.; Koestner, R.; Roiter, Y.; Tokarev, A.; Minko, S., Probing rough composite surfaces with atomic force microscopy: Nafion ionomer in fuel cell electrodes. Polymer 2016, 102, 396-403
  9. Laradji, A. M.; McNitt, C. D.; Yadavalli, N. S.; Popik, V. V.; Minko, S., Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene glycol) Polymer Brushes by the Grafting To Method and Their Properties. Macromolecules 2016, 49 (20), 7625-7631.
  10. Sempionatto, J. R.: Juliane R.; Gamella, M. ; Guz, N.; Pingarron, J.M. ; Pedrosa, V. A. ; Minko, S. ; Katz, E. Electrochemically Stimulated DNA Release from a Polymer-Brush Modified Electrode, Electroanalysis, 2015, 27 (9), 2171-2179.
  11. Kuroki, H.; Islam, C.; Tokarev, I.; Hu, H.; Liu, GJ.; Minko, S. Tunable Ultrathin Membranes with Nonvolatile Pore Shape Memory, ACS Appl. Mater. Interfaces 2015, 7(19), 10401-10406.
  12. Tokarev, I.; Gopishetty, V.; Minko,S. Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend. ACS Appl. Mater. Interfaces 2015, 7(23), 3560-3565.

Colloids

Enzymogel nanoparticles

Magnetic field-directed assembly

  1. Bakshi, S.; Guz, N. V.; Zakharchenko, A,; Deng, H.; Tumanov, A. V.; Woodworth, G. D.  Minko S.; Kolpashchikov, D. M.; Katz, E. Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field, Nanoscale, 2018, 10 (3), 1356-1365; DOI: 10.1039/ C7NR08581H.
  2. Zakharchenko1, A.; Guz N.; Laradji1, A. M.; Katz, E.; Minko, S. Magnetic Field Remotely Controlled Selective Biocatalysis, Nature Catalysis, 2018, 1, 73-81.
  3. Bakshi, S. F.; Guz, N.; Zakharchenko, A.; Deng, H.; Tumanov, A.;Woodworth C.; Minko,S.; Kolpashchikov, D.;  Katz, E. Magnetic Field-Activated Sensing of mRNA in Living Cells, J. Am. Chem. Soc., 2017, 139 (35), 12117-12120.
  4. Minko, S., Magnetically Stimulated Soft Matter. Adv. Functional Mater. 2016, 26 (22), 3759-3760.
  5. Tokarev, A.; Yatvin, J.; Trotsenko, O.; Locklin, J.; Minko, S., Nanostructured Soft Matter with Magnetic Nanoparticles. Adv. Functional Mater.  2016, 26 (22), 3761-3782.
  6. Samaratunga, A.; Kudina,O.; Nahar,N.; Zakharchenko, A.; Minko, S.; Voronov, A.; Pryor, S. W. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles  Appl. Biochem. Biotech. 2015, 176 (4), 1114-1130.
  7. Korkmaz, S.; Vahdat, AS; Trotsenko, O.; Minko, S.; Babu, SV. AFM-Based Study of the Interaction Forces between Ceria, Silicon Dioxide and Polyurethane Pad during Non-Prestonian Polishing of Silicon Dioxide Films, ECS J. Solid State Sci. Techn. 2015, 4(11), P5016-P5020.
  8. Trotsenko O.; Tokarev A.; Gruzd, A.; Enright, T.; Minko S. Magnetic field assisted assembly of highly ordered percolated nanostructures and their application for transparent conductive thin films, Nanoscale 2015, 7, 7155-7161.
  9. Samaratunga, A.; Kudina,O.; Nahar,N.; Zakharchenko, A.; Minko, S.; Voronov, A.; Pryor, S. W. Impact of Enzyme Loading on the Efficacy and Recovery of Cellulolytic Enzymes Immobilized on Enzymogel Nanoparticles, Appl. Biochem. Biotech. 2015, 175, 2872-2882.
  10. Tokarev, A.; Gu, Yu.; Zakharchenko, A.; Trotsenko, A.; Luzinov, I.; Kornev, K. G.; Minko, S. Reconfigurable Anisotropic Coatings via Magnetic Field-Directed Assembly and Translocation of Locking Magnetic Chains, Adv. Functional Mater. 2014,24 (30), 4738-4745.
  11. Kudina, O.; Zakharchenko, A.; Trotsenko, O. Tokarev, A.; Ionov, L.; Stoychev, G.; Puretskiy, N.; Pryor, S.W.; Voronov, A; Minko, S. Highly efficient phase boundary biocatalysis with enzymogel nanoparticles, Angew. Chem. Int. Ed. 2014, 53 (2), 483-487.
  12. Sukhorukov, G.; Luzinov, I.; Minko, S. Remotely Controlled Colloids, Interfaces, and Biosystems, Particles & Particle Systems Characterization 2013, 30 (11), 920-921.  
  13. Motornov, M.; Malynych, S.; Pippalla, D.; Zdyrko, B.; Royter, H.; Roiter, Y.; Kahabka, M.; Tokarev, A.; Tokarev, I.; Zhulina, E.; Kornev, K.; Luzinov, I.; Minko, S. Field-Directed Self-Assembly with Locking Nanoparticles. Nano Letters 2012, 12 (7), 3814–3820.
  14. Tokarev, I, Minko, S. Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers, Soft Matter, 2012, 8 (22), 5980-5987.

Coatings

Antireflective and selfcleaning transparent glass coatings

Ordered percolated nanostructures and their application for transparent conductive thin films

  1. Gruzd, A.; Tokarev, A.; Tokarev, I.; Kuksenkov, D.; Minko, S. All-Nanoparticle Monolayer Broadband Antireflective and SelfCleaning Transparent Glass Coatings, ACS Applied Materials & Interfaces 2021, 13 (5), 6767-6777; DOI:10.1021/acsami.0c18776.
  2. Saremi, R.; Borodinov, N.; Laradji, A. M.; Sharma, S.; Luzinov, I.; Minko, S., Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles, Molecules 2020, 25 (14). DOI 10.3390/molecules25143238.
  3. Tokarev, I.; Minko, S., Preprogrammed Dynamic Microstructured Polymer Interfaces. Advanced Functional Materials 2020, 30 (2), 1903478.
  4. Sempionatto, J. R.: Juliane R.; Gamella, M. ; Guz, N.; Pingarron, J.M. ; Pedrosa, V. A. ; Minko, S. ; Katz, E. Electrochemically Stimulated DNA Release from a Polymer-Brush Modified Electrode, Electroanalysis, 2015, 27 (9), 2171-2179.
  5. Kroning, A.; Furchner, A.; Aulich, D.; Bittrich, E.; Rauch, S.; Uhlmann, P.; Eichhorn, KJ.; Seeber, M.; Luzinov, I.; Kilbey, SM.; Lokitz, BS.; Minko, S. ; Hinrichs, K. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment, ACS Appl. Mater. Interfaces 2015, 7(23), 12430-12439
  6. Trotsenko O.; Tokarev A.; Gruzd, A.; Enright, T.; Minko S. Magnetic field assisted assembly of highly ordered percolated nanostructures and their application for transparent conductive thin films, Nanoscale 2015, 7, 7155-7161.
  7. Tokarev, I.; Gopishetty, V.; Minko,S. Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend. ACS Appl. Mater. Interfaces 2015, 7(23), 3560-3565.
  8. Cullen, D.A.; Koestner, R.; Kukreja, R. S.; Liu, Z. Y.; Minko, S.; Trotsenko, O.; Tokarev, A.; Guetaz, L.;  Meyer, H. M.; Parish, C. M.; More, K. L. Imaging and Microanalysis of Thin Ionomer Layers by Scanning Transmission Electron Microscopy, J. Electrochem. Soc., 2014, 161 (10) F1111-F1117.
  9. Tokarev, A.; Gu, Yu.; Zakharchenko, A.; Trotsenko, A.; Luzinov, I.; Kornev, K. G.; Minko, S. Reconfigurable Anisotropic Coatings via Magnetic Field-Directed Assembly and Translocation of Locking Magnetic Chains, Adv. Functional Mater. 2014,24 (30), 4738-4745.
  10. Grigoryev, A.; Roiter, Y.; Tokarev, I.; Luzinov, I.; Minko, S. Colloidal occlusion template method for micromanufacturing of omniphobic surfaces. Adv. Functional Mater, 2013, 23 (7), 870-877.
  11. Grigoryev, A.; Tokarev, I.; Kornev, K. G.; Luzinov, I.; Minko, S. Superomniphobic magnetic microtextures with remote wetting control. J. Amer. Chem. Soc. 2012, 134 (31), 12916–12919.
NSM logo

cONTACT US

OUR ADDRESS